Matching in Bipartite Graph Streams in a Small Number of Passes

نویسنده

  • Lasse Kliemann
چکیده

We consider the maximum-cardinality matching problem in bipartite graphs. The input graph G = (V, E) is not available for random access, but only as a stream, and random-access memory is limited to storing Θ(n) edges at a time, n = |V|. The number of passes over the input stream required to achieve the desired approximation is an important measure. It was shown by Eggert et al. (2009, 2011) that a 1 + 1/k approximation can be computed in O(k5) passes, independently of the input size. In this work, we present a new algorithm with the same approximation guarantee of 1 + 1/k, but show experimentally that it requires two orders of magnitude fewer passes. The proven bound on the number of passes is O(kn). This bound depends on the input size, and so in principle is inferior to O(k5). But we emphasize that in experiments, we do not find any correlation between theoretical bounds and actual performance: for all algorithms the number of passes observed in experiments is far below the corresponding theoretical bound. The most interesting insight comes from an experimental comparison of the previous and the new algorithm: e.g., for k = 9, the new one never needed more than 94 passes, even for instances with up to 2ˆ 106 vertices, whereas the previous one went up to more than 32 000 passes. Our main new technique is aimed at making the most out of each pass: we maintain a complex structure, using trees, for building augmenting paths.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounding cochordal cover number of graphs via vertex stretching

It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...

متن کامل

Coverings, matchings and paired domination in fuzzy graphs using strong arcs

The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...

متن کامل

Some lower bounds for the $L$-intersection number of graphs

‎For a set of non-negative integers~$L$‎, ‎the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots‎, ‎l}$ to vertices $v$‎, ‎such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$‎. ‎The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...

متن کامل

Matching Integral Graphs of Small Order

In this paper, we study matching integral graphs of small order. A graph is called matching integral if the zeros of its matching polynomial are all integers. Matching integral graphs were first studied by Akbari, Khalashi, etc. They characterized all traceable graphs which are matching integral. They studied matching integral regular graphs. Furthermore, it has been shown that there is no matc...

متن کامل

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011